8653 = (8 x 10^3) + (6 x 10^2) + (5 x 10^1) + (3 x 10^0)
212.11 = (2 x 10^2) + (1 x 10^1) + (2 x 10^0) + (1 x 10^-1) + (1 x 10^-2)
Representing an ASCII string in binary
Each letter is represented by eight bits (because it's ASCII)
L o o k space o u t !
--------------------------------------------------------------------------------
01001100 01101111 01101111 01101011 00100000 01101111 01110101 01110100 00100001
8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit
0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary Hex Value Decimal
-----------------------------------
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20 ...
For representing different numbering systems, a standard is to be followed in order to avoid confusion.
**Hexadecimal**
1. Place 0x before the hex numeral: **0x33**
2. Append a lowercase letter h after the numeral: **33h**
3. Use the 16 subscript: **(33)_16**
4. Specify base 16: **33 (base 16)**
---------------------------------------------------------
**Binary**
1. Place 0b before the binary: **0b1101**
2. Append a lowercase b at the end: 1000b
3. Use the 2 subscript: **(11)_2**
4. Specify the base beforehand: **10 (base 2)**
---------------------------------------------------------
Decimal
1. Place a 0d before the decimal: **0d112**
2. Mention base-10 in the subscript: **(112)_10**
3. Append a lowercase d after the decimal: **112d**
4. Specify the base beforehand: 10 (base 10)
$(number)_{10} = digit * (weight) ^ {place} + .......$
<aside> 👉 Method 1
</aside>
We use the same method in Binary, only difference is the base.
<aside> 👉 Method 2
</aside>